%0 tesis doctoral %A Calvo AlpĂ­zar, Juan Gabriel %D 2015 %T Domain Decomposition Methods for Problems in H(curl) %U https://cs.nyu.edu/media/publications/TR2015-974.pdf %U https://search.proquest.com/docview/1754416536/fulltextPDF/88A086563B514623PQ/1?accountid=28692 %U https://hdl.handle.net/10669/75137 %X Two domain decomposition methods for solving vector field problems posed in H(curl) and discretized with Nedelec finite elements are considered. These finite elements are conforming in H(curl). A two-level overlapping Schwarz algorithm in two dimensions is analyzed, where the subdomains are only assumed to be uniform in the sense of Peter Jones. The coarse space is based on energy minimization and its dimension equals the number of interior subdomain edges. Local direct solvers are based on the overlapping subdomains. The bound for the condition number depends only on a few geometric parameters of the decomposition. This bound is independent of jumps in the coefficients across the interface between the subdomains for most of the different cases considered. A bound is also obtained for the condition number of a balancing domain decomposition by constraints (BDDC) algorithm in two dimensions, with Jones subdomains. For the primal variable space, a continuity constraint for the tangential average over each interior subdomain edge is imposed. For the averaging operator, a new technique named deluxe scaling is used. The optimal bound is independent of jumps in the coefficients across the interface between the subdomains. Furthermore, a new coarse function for problems in three dimensions is introduced, with only one degree of freedom per subdomain edge. In all the cases, it is established that the algorithms are scalable. Numerical results that verify the results are provided, including some with subdomains with fractal edges and others obtained by a mesh partitioner.