Teoría de nudos geométricos e isotopía poligonal

 

Сохранить в:
Библиографические подробности
Автор: Calvo Soto, Jorge Alberto
Формат: artículo original
Статус:Versión publicada
Дата публикации:2001
Описание:The space of n-sided polygons embedded in euclidean three-space consists of a smooth manifold in which points correspond to piecewise linear or “geometric” knots, while paths correspond to isotopies which preserve the geometric structure of these knots. The topology of these spaces for the case n = 6 and n = 7 is described. In both of these cases, each knot space consists of five components, but contains only three (when n = 6) or four (when n = 7) topological knot types. Therefore “geometric knot equivalence” is strictly stronger than topological equivalence. This point is demonstrated by the hexagonal trefoils and heptagonalfigure-eight knots, which, unlike their topological counterparts, are not reversible. Extending these results to the cases n ≥ 8 will also be discussed.
Страна:Portal de Revistas UCR
Институт:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Язык:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/204
Online-ссылка:https://revistas.ucr.ac.cr/index.php/matematica/article/view/204
Ключевое слово:polygonal knots
space polygons
knot spaces
knot invariants
nudos poligonales
polígonos espaciales
espacios de nudos
invariantes de nudos