Teoría de nudos geométricos e isotopía poligonal
Сохранить в:
| Автор: | |
|---|---|
| Формат: | artículo original |
| Статус: | Versión publicada |
| Дата публикации: | 2001 |
| Описание: | The space of n-sided polygons embedded in euclidean three-space consists of a smooth manifold in which points correspond to piecewise linear or “geometric” knots, while paths correspond to isotopies which preserve the geometric structure of these knots. The topology of these spaces for the case n = 6 and n = 7 is described. In both of these cases, each knot space consists of five components, but contains only three (when n = 6) or four (when n = 7) topological knot types. Therefore “geometric knot equivalence” is strictly stronger than topological equivalence. This point is demonstrated by the hexagonal trefoils and heptagonalfigure-eight knots, which, unlike their topological counterparts, are not reversible. Extending these results to the cases n ≥ 8 will also be discussed. |
| Страна: | Portal de Revistas UCR |
| Институт: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Язык: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/204 |
| Online-ссылка: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/204 |
| Ключевое слово: | polygonal knots space polygons knot spaces knot invariants nudos poligonales polígonos espaciales espacios de nudos invariantes de nudos |