Elliptic surfaces and Hilbert’s tenth problem
Uloženo v:
| Autor: | |
|---|---|
| Médium: | artículo original |
| Stav: | Versión publicada |
| Datum vydání: | 2023 |
| Popis: | A negative solution to Hilbert’s tenth problem for the ring of integers OF of a number field F would follow if Z were Diophantine in OF. Denef and Lipshitz conjectured that the latter occurs for every number field F. In this note we show that the conjecture of Denef and Lipshitz is a consequence of a well-known conjecture on elliptic surfaces. |
| Země: | Portal de Revistas UCR |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Jazyk: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/52266 |
| On-line přístup: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/52266 |
| Klíčové slovo: | Décimo problema de Hilbert Anillos de enteros Superficies elípticas Curvas elípticas Hilbert’s tenth problem Rings of integers Elliptic surfaces Elliptic curves |