Description and implementation of an algebraic multigrid preconditioner for H1-conforming finite element schemes

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Guillén Oviedo, Helen, Ramirez, Jeremias, Segura Ugalde, Esteban, Sequeira, Filander
Μορφή: artículo
Ημερομηνία έκδοσης:2020
Περιγραφή:This paper presents detailed aspects regarding the implementation of the Finite Element Method (FEM) to solve a Poisson’s equation with homogeneous boundary conditions. The aim of this paper is to clarify details of this implementation, such as the construction of algorithms, implementation of numerical experiments, and their results. For such purpose, the continuous problem is described, and a classical FEM approach is used to solve it. In addition, a multilevel technique is implemented for an efficient resolution of the corresponding linear system, describing and including some diagrams to explain the process and presenting the implementation codes in MATLAB®. Finally, codes are validated using several numerical experiments. Results show an adequate behavior of the preconditioner since the number of iterations of the PCG method does not increase, even when the mesh size is reduced.
Χώρα:Repositorio UNA
Ίδρυμα:Universidad Nacional de Costa Rica
Repositorio:Repositorio UNA
Γλώσσα:Inglés
OAI Identifier:oai:null:11056/20216
Διαθέσιμο Online:http://hdl.handle.net/11056/20216
Λέξη-Κλειδί :FINITE ELEMENT METHODS
H1- CONFORMING SCHEMES
LOW- ORDER APPROXIMATIONS
MULTILEVEL TECHNIQUES
COMPUTATIONAL IMPLEMENTATION
MATLAB
MÉTODOS DE ELEMENTOS FINITOS
ESQUEMAS H1 CONFORMES
APROXIMACIONES DE BAJO ORDEN
TÉCNICAS MULTINIVELES
IMPLEMENTACIÓN COMPUTACIONAL
ESQUEMAS H1 COMPATÍVEIS
APROXIMAÇÕES DE BAIXA ORDEM
TÉCNICAS MULTINÍVEIS
IMPLEMENTAÇÃO COMPUTACIONAL