A mixed virtual element method for the boussinesq problem on polygonal meshes

 

Guardado en:
Detalles Bibliográficos
Autores: Gatica, Gabriel, Munar Benitez, Edgar Mauricio, Sequeira, Filander
Formato: artículo
Fecha de Publicación:2021
Descripción:In this work we introduce and analyze a mixed virtual element method (mixed-VEM) for the two-dimensional stationary Boussinesq problem. The continuous formulation is based on the introduction of a pseudostress tensor depending nonlinearly on the velocity, which allows to obtain an equivalent model in which the main unknowns are given by the aforementioned pseudostress tensor, the velocity and the temperature, whereas the pressure is computed via a postprocessing formula. In addition, an augmented approach together with a fixed point strategy is used to analyze the well-posedness of the resulting continuous formulation. Regarding the discrete problem, we follow the approach employed in a previous work dealing with the Navier-Stokes equations, and couple it with a VEM for the convection-diffiusion equation modelling the temperature. More precisely, we use a mixed-VEM for the scheme associated with the uid equations in such a way that the pseudostress and the velocity are approximated on virtual element subspaces of H(div) and H1, respectively, whereas a VEM is proposed to approximate the temperature on a virtual element subspace of H1. In this way, we make use of the L2-orthogonal projectors onto suitable polynomial spaces, which allows the explicit integration of the terms that appear in the bilinear and trilinear forms involved in the scheme for the uid equations. On the other hand, in order to manipulate the bilinear form associated to the heat equations, we define a suitable projector onto a space of polynomials to deal with the fact that the diffiusion tensor, which represents the thermal conductivity, is variable. Next, the corresponding solvability analysis is performed using again appropriate fixed-point arguments. Further, Strang-type estimates are applied to derive the a priori error estimates for the components of the virtual element solution as well as for the fully computable projections of them and the postprocessed pressure. The corresponding rates of convergence are also established. Finally, several numerical examples illustrating the performance of the mixed-VEM scheme and confirming these theoretical rates are presented.
País:Repositorio UNA
Institución:Universidad Nacional de Costa Rica
Repositorio:Repositorio UNA
Lenguaje:Inglés
OAI Identifier:oai:https://repositorio.una.ac.cr:11056/22278
Acceso en línea:http://hdl.handle.net/11056/22278
Access Level:acceso abierto
Palabra clave:AUGMENTED FORMULATION
BOUSSINESQ PROBLEM
HIGH-ORDER APPROXIMATIONS
MIXED VIRTUAL ELEMENT METHOD
PSEUDOSTRESS-BASED FORMULATION