Ontogeny of sporangia and sporogenesis of the fern Phymatosorus scolopendria (Polypodiaceae)

 

Guardado en:
Detalles Bibliográficos
Autores: Rincón Barón, Edgar Javier, Guerra Sierra, Beatriz Elena, Sandoval, Adriana Ximena, Espinosa, Silvia
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2020
Descripción:Introduction: Research about the ontogeny of sori, sporangia, receptacular paraphyses and sporogenesis of leptosporangiate ferns are scarce in the scientific literature. Objectives: To describe and analyze the ontogeny of sori, sporangia, receptacular paraphyses and sporogenesis of Phymatosorus scolopendria. Methods: Fertile fronds of P. scolopendria were collected in the campus of the Universidad de Antioquia, Medellín, Colombia, during the months March and May (annual rain season) of 2017. The fertile fronds of the samples at different developmental stages were fixed and processed according to the standard protocols for embedding and sectioning in paraffin and resin. Sections of 0.5 µm obtained in resin were stained with Toluidine blue, which differentially stains primary and secondary walls, highlights the cell nucleus and sporopolenin and secondarily stains polyphenols. For detailed descriptions, additional sections were processed with Safranin-Alcian blue, allowing the distinction of components of primary and secondary walls, nuclei, cuticle and polyphenols; Hematoxylin-Alcian blue to enhance nuclei and primary walls and Phloroglucinol-HCl for lignin. Observations and photographic records were done with a photonic microscope. For the observations and descriptions with scanning electron microscopy (SEM), the sori were dehydrated with 2,2-dimethoxypropane, critical point dried and coated with gold. Results: The sori are exindusiate, superficial, vascularized and have mixed development; they are associated with uniseriate and multicellular receptacle paraphyses. During the development of the sori, the epidermal cells of the receptacle that will form the sporangia are the first differentiated followed by those forming the receptacle paraphyses. The sporangium is leptosporangiate, with long stalks formed by one or two cell rows. The annulus of the sporangia displays secondary walls with U-shaped thickenings rich in lignin. The meiosis is simultaneous and the spore tetrads are arranged in a decussate or tetragonal shape. The cellular tapetum is initially unistratified but becomes bistratified after a periclinal division. The cells of the internal strata of the cellular tapetum loose structural integrity giving rise to a plasmodial tapetum that invades the meiotic sporocytes. During the sporoderm development, the sporopollenin-composed exospore is the first formed followed by the endospore, composed by cellulose, pectin and carboxylated polysaccharides; the process ends with the perispore. Polyphenols were mainly detected on vacuoles in cells of the sporangium, paraphysis and receptacle. When the time comes for the spore maturation, the remnants of cellular and the plasmodial tapeta have fully degenerated. Abundant orbicles are seen near the spores in the sporangial cavity. Conclusions: The ontogeny of the sporangia and sporogenesis of P. scolopendria are similar to the previously described for leptosporangiate ferns. Furthermore, in P. scolopendria, the receptacle paraphyses of the sori have a role protecting the sporangium during the early development stages.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/39676
Acceso en línea:https://revistas.ucr.ac.cr/index.php/rbt/article/view/39676
Access Level:acceso abierto
Palabra clave:epiphytic fern
Microsoroideae
sporangia development
sorus
ultrastructure
desarrollo de los esporangios
helecho epífito
soro
ultraestructura