LiProS: FAIR simulation workflow to predict accurate lipophilicity profiles for small molecules

 

Guardat en:
Dades bibliogràfiques
Autors: Bertsch Aguilar, Esteban, Piedra, Antonio, Acuña Monge, Daniel Gerardo, Suñer Sánchez, Sebastián, De Souza Pinheiro, Sylvana, Zamora Ramírez, William J.
Format: artículo original
Data de publicació:2024
Descripció:The consideration of the ionic partition coefficient in estimating pH-dependent lipophilicity profiles for small molecules has been previously emphasized through classification Machine Learning protocols. In alignment with the principles of Findable, Accessible, Interoperable, and Reusable (FAIR) data to enhance data management and sharing, we introduce LiProS: a FAIR workflow accessible via Google Colab. LiProS assists researchers in efficiently determining the appropriate pH-dependent lipophilicity profile based on the SMILES code of their molecules of interest. LiProS demonstrated its applicability in discerning the most suitable lipophilicity formalism based on small structural variations in potential cases of structure-based drug design.
Pais:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Idioma:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/103409
Accés en línia:https://chemrxiv.org/engage/chemrxiv/article-details/670eda9312ff75c3a1894265
https://hdl.handle.net/10669/103409
https://doi.org/10.26434/chemrxiv-2024-znppb-v2
Paraula clau:Lipophilicity
Small Molecules
FAIR simulation
Hydrophobicity
Physicochemical Properties