Breaking the disulfide chemical bond using high energy photons: the dimethyl disulfide and methyl propyl disulfide molecules

 

Saved in:
Bibliographic Details
Authors: Ramírez Varas, Lautaro Javier, Coutinho, Lucia Helena, Bernini, R. B., Moreno Betancourt, Angélica, de Moura, Carlos E. V., Rocha, Alexandre Braga da, de Souza, Gerardo Gerson Bezerra
Format: artículo original
Publication Date:2017
Description:In order to study the stability of the disulfide chemical bond in molecules subjected to a flux of high energy photons, the ionic fragmentation of two molecules containing a disulfide chemical bond, dimethyl disulfide (DMDS) and methyl propyl disulfide (MPDS), has been studied following excitation around the S 1s edge (∼2470 eV). Synchrotron radiation and electron-ion coincidence techniques were used. The core excited states of DMDS and MPDS have also been theoretically investigated at the multiconfigurational self-consistent field (MCSCF) level and multireference perturbation theory. Deep core excitation (S 1s) induces multiple ionization and intense fragmentation of the molecules, as clearly demonstrated by the observation of cations such as S+, S2+ and S3+. Splitting of the S+ peak is observed in the mass spectra of the two molecules when they are excited to a resonant state with antibonding (S–S) character. Although fragments associated with the breakage of the disulfide bond (S+ and CHnS+) play a dominant role in the dissociation of the molecules, a fragment containing the disulfide chemical bond, S2+, survives, nevertheless, at all photon energies.
Country:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/79813
Online Access:https://pubs.rsc.org/en/content/articlepdf/2017/ra/c7ra05001a
https://hdl.handle.net/10669/79813
Keyword:Synchrotron
NEXAFS
PEPIPICO
Bio-molecules
Mass Spectoscopy
DMDS PMDS