Simple object detection framework without training

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Xie-Li, Danny, Fallas Moya, Fabián, Calderón Ramírez, Saúl
Μορφή: comunicación de congreso
Ημερομηνία έκδοσης:2025
Περιγραφή:This research introduces a simple framework for Object Detection (OD) based on few-shot methods and Visual Foundation Models (VFM). The framework comprises of three core modules: (i) object proposal, (ii) embedding creation, and (iii) object classification. We evaluated six distinct VFMs to generate the object proposals. We compared the performances of four feature extractors to optimize the object representation, including convolutional neural networks and transformer-based models. Furthermore, we investigated four few-shot methods for classifying objects using minimal labeled data. Our framework provides a scalable and cost-effective solution, specifically applied to OD for pineapple localization in the drone imagery of large pineapple fields, where labeled data are scarce and expensive.
Χώρα:Kérwá
Ίδρυμα:Universidad de Costa Rica
Repositorio:Kérwá
Γλώσσα:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/102299
Διαθέσιμο Online:https://hdl.handle.net/10669/102299
https://doi.org/10.1109/BIP63158.2024.10885396
Λέξη-Κλειδί :Object Detection
OD
Visual Foundation Models
VFM
few-shot methods
agrotechnology
agricultural technology