Una contrucción alternativa de la curva de Sierpinski

 

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون: Román Tizapa, Yair, Mendieta, Javier G., Cantor Jimón, Isaí
التنسيق: artículo original
الحالة:Versión publicada
تاريخ النشر:2018
الوصف:Waclaw Franciszek Sierpinski, autor de más de 724 trabajos y 50 libros, introdujo en 1915 una curva continua que, como la de Koch, tiene longitud infinita y no tiene tangente en cualquiera de sus puntos, [2]; fue construida con la finalidad de dar un contraejemplo en la formalización del Cálculo [8]; tal curva se conoce, en la literatura matemática, por Curva de Sierpinski. En este trabajo daremos una definición alternativa de la Curva de Sierpinski construida también mediante poligonales, determinaremos el área asociada a su interior en cada una de sus etapas y en la situación límite, y haremos ver que la curva y el triángulo de Sierpinski determinan el mismo objeto geométrico.
البلد:Portal de Revistas TEC
المؤسسة:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
اللغة:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/3520
الوصول للمادة أونلاين:https://revistas.tec.ac.cr/index.php/matematica/article/view/3520
كلمة مفتاحية:Curva de Sierpinski
Triángulo de Sierpinski
Poligonal
Área asociada a la curva de Sierpinski