Una contrucción alternativa de la curva de Sierpinski

 

Kaydedildi:
Detaylı Bibliyografya
Yazarlar: Román Tizapa, Yair, Mendieta, Javier G., Cantor Jimón, Isaí
Materyal Türü: artículo original
Durum:Versión publicada
Yayın Tarihi:2018
Diğer Bilgiler:Waclaw Franciszek Sierpinski, autor de más de 724 trabajos y 50 libros, introdujo en 1915 una curva continua que, como la de Koch, tiene longitud infinita y no tiene tangente en cualquiera de sus puntos, [2]; fue construida con la finalidad de dar un contraejemplo en la formalización del Cálculo [8]; tal curva se conoce, en la literatura matemática, por Curva de Sierpinski. En este trabajo daremos una definición alternativa de la Curva de Sierpinski construida también mediante poligonales, determinaremos el área asociada a su interior en cada una de sus etapas y en la situación límite, y haremos ver que la curva y el triángulo de Sierpinski determinan el mismo objeto geométrico.
Ülke:Portal de Revistas TEC
Kurum:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Dil:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/3520
Online Erişim:https://revistas.tec.ac.cr/index.php/matematica/article/view/3520
Anahtar Kelime:Curva de Sierpinski
Triángulo de Sierpinski
Poligonal
Área asociada a la curva de Sierpinski