Instance segmentation for automated weeds and crops detection in farmlands

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Mora-Fallas, Adán, Goëau, Hervé, Joly, Alexis, Bonnet, Pierre, Mata-Montero, Erick
Μορφή: artículo original
Κατάσταση:Versión publicada
Ημερομηνία έκδοσης:2020
Περιγραφή:Based on recent successful applications of Deep Learning techniques in classification, detection and segmentation of plants, we propose an instance segmentation approach that uses a Mask R-CNN model for weeds and crops detection on farmlands. We evaluated our model performance with the MSCOCO average precision metric, contrasting the use of data augmentation techniques. Results obtained show how the model fits very well in this context, opening new opportunities to automated weed control solutions, at larger scales.
Χώρα:Portal de Revistas TEC
Ίδρυμα:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Γλώσσα:Inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/5069
Διαθέσιμο Online:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5069
Λέξη-Κλειδί :Deep learning
instance segmentation
computer vision
precision agriculture
biodiversity informatics
weed detection
species identification
Aprendizaje profundo
segmentación de instancias
visión por computadora
agricultura de precisión
bioinformática
detección de malezas
identificación de especies