Instance segmentation for automated weeds and crops detection in farmlands

 

Enregistré dans:
Détails bibliographiques
Auteurs: Mora-Fallas, Adán, Goëau, Hervé, Joly, Alexis, Bonnet, Pierre, Mata-Montero, Erick
Format: artículo original
Statut:Versión publicada
Date de publication:2020
Description:Based on recent successful applications of Deep Learning techniques in classification, detection and segmentation of plants, we propose an instance segmentation approach that uses a Mask R-CNN model for weeds and crops detection on farmlands. We evaluated our model performance with the MSCOCO average precision metric, contrasting the use of data augmentation techniques. Results obtained show how the model fits very well in this context, opening new opportunities to automated weed control solutions, at larger scales.
Pays:Portal de Revistas TEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Langue:Inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/5069
Accès en ligne:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5069
Mots-clés:Deep learning
instance segmentation
computer vision
precision agriculture
biodiversity informatics
weed detection
species identification
Aprendizaje profundo
segmentación de instancias
visión por computadora
agricultura de precisión
bioinformática
detección de malezas
identificación de especies