From a prime number race to a divergent series race: De una carrera de números primos a una carrera de series divergentes

 

Guardat en:
Dades bibliogràfiques
Autors: Miramontes de León, Gerardo, Miramontes de León, Diego
Format: artículo original
Estat:Versión publicada
Data de publicació:2022
Descripció:In the distribution of prime numbers classes 4n + 3 and 4n + 1, a competition or “race” is observed for which one contains more primes. Chébyshev observed that the former contains more than the latter. Here, it is conjectured that there is an infinite number of times that this competition, Δπ = π(4n + 3) − π(4n + 1), does not have a leader and that this occurs fewer times than Chébyshev’s observation, and more times than Littlewood’s distribution, that is, #{Infinite_times Δπ > 0} > #{Infinite_times Δπ = 0} >  {Infinite_times Δπ < 0}. Based on this idea, a race of divergent subharmonic numbers is presented, in which the difference between one subharmonic number and another is a finite value that can be calculated and its asymptotic value is valid for infinite series.
Pais:Portal de Revistas TEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Idioma:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/6133
Accés en línia:https://revistas.tec.ac.cr/index.php/matematica/article/view/6133