Performance characterization on embedded systems for Edge AI person-detection models

 

Saved in:
Bibliographic Details
Authors: Cabrera-Quiros, Laura, Orozco-Retana, Kimberly
Format: artículo original
Status:Versión publicada
Publication Date:2025
Description:This paper presents a hardware performance characterization for two Edge AI platforms: Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation system. The characterization considers the results from an SSD-Mobilenet object-detection model using two different datasets, one with 80 different object classes and another with only people. Comparison metrics consider model accuracy, latency, queries processed per second, and samples processed per second under the evaluation of different execution scenarios.
Country:Portal de Revistas TEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Language:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7754
Online Access:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7754
Keyword:EdgeIA
NVIDIA Jetson Nano
Raspberry Pi 4
MLPerf
Inference Benchmark
SSD-MobileNet
Edge AI
MLPerf Inference Benchmark