Performance characterization on embedded systems for Edge AI person-detection models

 

Gorde:
Xehetasun bibliografikoak
Egileak: Cabrera-Quiros, Laura, Orozco-Retana, Kimberly
Formatua: artículo original
Egoera:Versión publicada
Argitaratze data:2025
Deskribapena:This paper presents a hardware performance characterization for two Edge AI platforms: Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation system. The characterization considers the results from an SSD-Mobilenet object-detection model using two different datasets, one with 80 different object classes and another with only people. Comparison metrics consider model accuracy, latency, queries processed per second, and samples processed per second under the evaluation of different execution scenarios.
Herria:Portal de Revistas TEC
Erakundea:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Hizkuntza:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7754
Sarrera elektronikoa:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7754
Gako-hitza:EdgeIA
NVIDIA Jetson Nano
Raspberry Pi 4
MLPerf
Inference Benchmark
SSD-MobileNet
Edge AI
MLPerf Inference Benchmark