Performance characterization on embedded systems for Edge AI person-detection models

 

保存先:
書誌詳細
著者: Cabrera-Quiros, Laura, Orozco-Retana, Kimberly
フォーマット: artículo original
状態:Versión publicada
出版日付:2025
その他の書誌記述:This paper presents a hardware performance characterization for two Edge AI platforms: Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation system. The characterization considers the results from an SSD-Mobilenet object-detection model using two different datasets, one with 80 different object classes and another with only people. Comparison metrics consider model accuracy, latency, queries processed per second, and samples processed per second under the evaluation of different execution scenarios.
国:Portal de Revistas TEC
機関:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
言語:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7754
オンライン・アクセス:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7754
キーワード:EdgeIA
NVIDIA Jetson Nano
Raspberry Pi 4
MLPerf
Inference Benchmark
SSD-MobileNet
Edge AI
MLPerf Inference Benchmark