Performance characterization on embedded systems for Edge AI person-detection models

 

Guardado en:
書目詳細資料
Autores: Cabrera-Quiros, Laura, Orozco-Retana, Kimberly
格式: artículo original
狀態:Versión publicada
Fecha de Publicación:2025
實物特徵:This paper presents a hardware performance characterization for two Edge AI platforms: Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation system. The characterization considers the results from an SSD-Mobilenet object-detection model using two different datasets, one with 80 different object classes and another with only people. Comparison metrics consider model accuracy, latency, queries processed per second, and samples processed per second under the evaluation of different execution scenarios.
País:Portal de Revistas TEC
機構:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
語言:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7754
在線閱讀:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7754
Palabra clave:EdgeIA
NVIDIA Jetson Nano
Raspberry Pi 4
MLPerf
Inference Benchmark
SSD-MobileNet
Edge AI
MLPerf Inference Benchmark