Uncertainty estimation for a speech recognition system

 

Enregistré dans:
Détails bibliographiques
Auteurs: Morales-Muñoz, Walter, Calderón-Ramírez, Saúl
Format: artículo original
Statut:Versión publicada
Date de publication:2024
Description:Whisper is a voice recognition system designed by the company OpenAI, which has been trained with 680,000 hours of multilingual and multitask supervised data collected from the web. The following research aims to adapt and employ the Monte Carlo Dropout using audio data labeled in Spanish and contaminated with a certain amount of noise and Levensthein distance to estimate the score uncertainty of this system.Preliminary results show that there is a linear relationship between uncertainty estimation and the Word Error Rate (WER) of the transcriptions. Furthermore, it is observed that the number of insertions or omissions in the transcriptions tends to be low.
Pays:Portal de Revistas TEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Langue:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7305
Accès en ligne:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7305
Mots-clés:Uncertainty
Speech Recognition
ASR
Whisper
Monte Carlo Dropout
Incertidumbre
Reconocimiento de voz