Uncertainty estimation for a speech recognition system

 

Shranjeno v:
Bibliografske podrobnosti
Autores: Morales-Muñoz, Walter, Calderón-Ramírez, Saúl
Format: artículo original
Status:Versión publicada
Fecha de Publicación:2024
Opis:Whisper is a voice recognition system designed by the company OpenAI, which has been trained with 680,000 hours of multilingual and multitask supervised data collected from the web. The following research aims to adapt and employ the Monte Carlo Dropout using audio data labeled in Spanish and contaminated with a certain amount of noise and Levensthein distance to estimate the score uncertainty of this system.Preliminary results show that there is a linear relationship between uncertainty estimation and the Word Error Rate (WER) of the transcriptions. Furthermore, it is observed that the number of insertions or omissions in the transcriptions tends to be low.
País:Portal de Revistas TEC
Institucija:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Jezik:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7305
Online dostop:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7305
Ključna beseda:Uncertainty
Speech Recognition
ASR
Whisper
Monte Carlo Dropout
Incertidumbre
Reconocimiento de voz