Design and analysis of convergence and stability of iterative methods for solving nonlinear equations: Diseño y análisis de la convergencia y estabilidad de métodos iterativos para la resolución de ecuaciones no lineales

 

Сохранить в:
Библиографические подробности
Авторы: Solís Zúñiga, Armando Gabriel, Cordero Barbero, Alicia, Torregrosa Sánchez, Juan Ramón, Soto Quirós, Juan Pablo
Формат: artículo original
Статус:Versión publicada
Дата публикации:2021
Описание:One stream in numerical analysis is the creation of new iterative methods for the resolution of non-linear equations; optimal processes are sought in contrast with their order of convergence and the number of functional evaluations compared to usual known methods. This article shows a design of a new parametric family of iterative methods based on the Chun's family of methods which contains the particular case of the Ostrowski's scheme. Through an analysis with complex dynamic it is intended to visualize dynamic planes and parameters' planes to choose the best parameter who brings more stable behavior for the scheme under study and make it more efficient.
Страна:Portal de Revistas TEC
Институт:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Язык:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/5602
Online-ссылка:https://revistas.tec.ac.cr/index.php/matematica/article/view/5602