Uncertainty in Land Value Modeling of the San José Metropolitan Region, Costa Rica
Guardado en:
| Autores: | , |
|---|---|
| Formato: | artículo original |
| Estado: | Versión publicada |
| Fecha de Publicación: | 2023 |
| Descripción: | Land value patterns show very distinct spatial associations with accessibility to urban centralities and physical factors in a territory. However, predictions based on models of this structure can be highly uncertain, as the underlying data also may show clustering (thus allowing for better predictions in more densely sampled areas). An assessment of this uncertainty for land value extrapolations in the the San José Metropolitan Region of Costa Rica is presented, via conditional Gaussian simulation, and the determinants of this uncertainty were explored, to find spatial strengths and weaknesses in the modeling efforts. The E-Type prediction from the conditional Gaussian simulation was found to marginally improve on ordinary kriging methods and it also provided explicit uncertainty patterns, which are the inverse of the land value prediction. The estimated uncertainty was found to decrease with characteristics that identify suitability for urban land use (and thus higher land values). |
| País: | Portal de Revistas UCR |
| Institución: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Lenguaje: | Inglés |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/56618 |
| Acceso en línea: | https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/56618 |
| Palabra clave: | Extrapolation land values sequential Gaussian simulation spatial factors uncertainty Extrapolación factores espaciales incertidumbre simulación gaussiana secuencial valor del suelo |