Uncertainty in Land Value Modeling of the San José Metropolitan Region, Costa Rica

 

Na minha lista:
Detalhes bibliográficos
Autores: Pérez Molina, Eduardo, Vargas Aguilar, Darío
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2023
Descrição:Land value patterns show very distinct spatial associations with accessibility to urban centralities and physical factors in a territory. However, predictions based on models of this structure can be highly uncertain, as the underlying data also may show clustering (thus allowing for better predictions in more densely sampled areas). An assessment of this uncertainty for land value extrapolations in the the San José Metropolitan Region of Costa Rica is presented, via conditional Gaussian simulation, and the determinants of this uncertainty were explored, to find spatial strengths and weaknesses in the modeling efforts. The E-Type prediction from the conditional Gaussian simulation was found to marginally improve on ordinary kriging methods and it also provided explicit uncertainty patterns, which are the inverse of the land value prediction. The estimated uncertainty was found to decrease with characteristics that identify suitability for urban land use (and thus higher land values).
País:Portal de Revistas UCR
Recursos:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Idioma:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/56618
Acesso em linha:https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/56618
Palavra-chave:Extrapolation
land values
sequential Gaussian
simulation
spatial factors
uncertainty
Extrapolación
factores espaciales
incertidumbre
simulación gaussiana secuencial
valor del suelo