A robust stability criterion in the heat equation with a conformable fractional derivative defined on a radially symmetric sphere

 

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون: Temoltzi-Ávila, Raúl, Ávila-Pozos, Roberto, Cruz-Castillo, Ricardo, Jiménez-Munguía, Ronald R., Santillán-Hernández, Alma S.
التنسيق: artículo original
الحالة:Versión publicada
تاريخ النشر:2025
الوصف:In this paper, we present a robust stability criterion for a heat equation with axial symmetry and with a general time-conformable fractional derivative defined on a sphere. The heat equation is assumed to have a heat source that is represented as a Fourier series with coefficients described by bounded, piecewise continuous functions. The robust stability criterion establishes conditions to guarantee that the solution of the heat equation, along with its partial derivative with respect to the radial axis and its general timeconformable fractional derivative, remains bounded by a predetermined value. The robust stability criterion is obtained by extending the concept of stability under constant-acting perturbations applied to systems of ordinary differential equations. The results are illustrated numerically.
البلد:Portal de Revistas UCR
المؤسسة:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
اللغة:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/57678
الوصول للمادة أونلاين:https://revistas.ucr.ac.cr/index.php/matematica/article/view/57678
كلمة مفتاحية:Derivada fraccionaria conformable general
Ecuación de calor
Series de Fourier
Estabilidad robusta
General conformable fractional derivative
Heat equation
Fourier series
Robust stability