A robust stability criterion in the heat equation with a conformable fractional derivative defined on a radially symmetric sphere

 

Uloženo v:
Podrobná bibliografie
Autoři: Temoltzi-Ávila, Raúl, Ávila-Pozos, Roberto, Cruz-Castillo, Ricardo, Jiménez-Munguía, Ronald R., Santillán-Hernández, Alma S.
Médium: artículo original
Stav:Versión publicada
Datum vydání:2025
Popis:In this paper, we present a robust stability criterion for a heat equation with axial symmetry and with a general time-conformable fractional derivative defined on a sphere. The heat equation is assumed to have a heat source that is represented as a Fourier series with coefficients described by bounded, piecewise continuous functions. The robust stability criterion establishes conditions to guarantee that the solution of the heat equation, along with its partial derivative with respect to the radial axis and its general timeconformable fractional derivative, remains bounded by a predetermined value. The robust stability criterion is obtained by extending the concept of stability under constant-acting perturbations applied to systems of ordinary differential equations. The results are illustrated numerically.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/57678
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/57678
Klíčové slovo:Derivada fraccionaria conformable general
Ecuación de calor
Series de Fourier
Estabilidad robusta
General conformable fractional derivative
Heat equation
Fourier series
Robust stability