A robust stability criterion in the heat equation with a conformable fractional derivative defined on a radially symmetric sphere

 

Enregistré dans:
Détails bibliographiques
Auteurs: Temoltzi-Ávila, Raúl, Ávila-Pozos, Roberto, Cruz-Castillo, Ricardo, Jiménez-Munguía, Ronald R., Santillán-Hernández, Alma S.
Format: artículo original
Statut:Versión publicada
Date de publication:2025
Description:In this paper, we present a robust stability criterion for a heat equation with axial symmetry and with a general time-conformable fractional derivative defined on a sphere. The heat equation is assumed to have a heat source that is represented as a Fourier series with coefficients described by bounded, piecewise continuous functions. The robust stability criterion establishes conditions to guarantee that the solution of the heat equation, along with its partial derivative with respect to the radial axis and its general timeconformable fractional derivative, remains bounded by a predetermined value. The robust stability criterion is obtained by extending the concept of stability under constant-acting perturbations applied to systems of ordinary differential equations. The results are illustrated numerically.
Pays:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Langue:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/57678
Accès en ligne:https://revistas.ucr.ac.cr/index.php/matematica/article/view/57678
Mots-clés:Derivada fraccionaria conformable general
Ecuación de calor
Series de Fourier
Estabilidad robusta
General conformable fractional derivative
Heat equation
Fourier series
Robust stability