A robust stability criterion in the heat equation with a conformable fractional derivative defined on a radially symmetric sphere

 

保存先:
書誌詳細
著者: Temoltzi-Ávila, Raúl, Ávila-Pozos, Roberto, Cruz-Castillo, Ricardo, Jiménez-Munguía, Ronald R., Santillán-Hernández, Alma S.
フォーマット: artículo original
状態:Versión publicada
出版日付:2025
その他の書誌記述:In this paper, we present a robust stability criterion for a heat equation with axial symmetry and with a general time-conformable fractional derivative defined on a sphere. The heat equation is assumed to have a heat source that is represented as a Fourier series with coefficients described by bounded, piecewise continuous functions. The robust stability criterion establishes conditions to guarantee that the solution of the heat equation, along with its partial derivative with respect to the radial axis and its general timeconformable fractional derivative, remains bounded by a predetermined value. The robust stability criterion is obtained by extending the concept of stability under constant-acting perturbations applied to systems of ordinary differential equations. The results are illustrated numerically.
国:Portal de Revistas UCR
機関:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
言語:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/57678
オンライン・アクセス:https://revistas.ucr.ac.cr/index.php/matematica/article/view/57678
キーワード:Derivada fraccionaria conformable general
Ecuación de calor
Series de Fourier
Estabilidad robusta
General conformable fractional derivative
Heat equation
Fourier series
Robust stability