A robust stability criterion in the heat equation with a conformable fractional derivative defined on a radially symmetric sphere

 

Сохранить в:
Библиографические подробности
Авторы: Temoltzi-Ávila, Raúl, Ávila-Pozos, Roberto, Cruz-Castillo, Ricardo, Jiménez-Munguía, Ronald R., Santillán-Hernández, Alma S.
Формат: artículo original
Статус:Versión publicada
Дата публикации:2025
Описание:In this paper, we present a robust stability criterion for a heat equation with axial symmetry and with a general time-conformable fractional derivative defined on a sphere. The heat equation is assumed to have a heat source that is represented as a Fourier series with coefficients described by bounded, piecewise continuous functions. The robust stability criterion establishes conditions to guarantee that the solution of the heat equation, along with its partial derivative with respect to the radial axis and its general timeconformable fractional derivative, remains bounded by a predetermined value. The robust stability criterion is obtained by extending the concept of stability under constant-acting perturbations applied to systems of ordinary differential equations. The results are illustrated numerically.
Страна:Portal de Revistas UCR
Институт:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Язык:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/57678
Online-ссылка:https://revistas.ucr.ac.cr/index.php/matematica/article/view/57678
Ключевое слово:Derivada fraccionaria conformable general
Ecuación de calor
Series de Fourier
Estabilidad robusta
General conformable fractional derivative
Heat equation
Fourier series
Robust stability