Estimación bayesiana en la familia Pareto generalizada

 

Saved in:
Bibliographic Details
Author: Sánchez Gómez, Rubén
Format: artículo original
Status:Versión publicada
Publication Date:2008
Description:The generalized Pareto family of distributions with scale parameter > 0 and k form, has been used for modeling surplus over a given threshold, even though the parametric estimation in this family has some problems. In this work we study the Bayesian approach for estimating parameters and k when no a priori information is available and we discuss the case when there is previous information. We presenta simulation study in order to analyze the performance of the Bayesian methodology, employing non informative a priori distributions and the methods available in the literature. This study shows that the Bayesian estimation performs better than other proposed methods, in terms of bias and aquare root of the mean quadratic error. The estimation methodologies analized are applied to real data sets.
Country:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Language:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/289
Online Access:https://revistas.ucr.ac.cr/index.php/matematica/article/view/289
Keyword:Generalized Pareto family
estimation methods
Monte Carlo study
Familia Pareto generalizada
métodos de estimación
estudio Monte Carlo