The hydrogen atom according to wave mechanics - III. ellipsoidal coordinates

 

Saved in:
Bibliographic Details
Author: Ogilvie, J. F.
Format: artículo original
Status:Versión publicada
Publication Date:2017
Description:Schroedinger's temporally independent partial-differential equation is directly solvable in ellipsoidal coordinates to yield three ordinary-differential equations; with a common factor in equatorial angular coordinate φ as in spherical polar and paraboloidal coordinates, the product of their solutions contains confluent Heun functions in coordinates ξ and η that impede further calculations at present. To provide plots of these functions, we apply published solutions from Kereselidze et al. in series to illustrate the dependence of the shape of the amplitude functions on distance d between the foci of the ellipsoids, between limiting cases of amplitude functions in spherical polar coordinates as d → 0 and in paraboloidal coordinates as d → ∞. These ellipsoidal coordinates are most appropriate for a treatment of a hydrogen atom in a diatomic-molecular context.
Country:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Language:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/29660
Online Access:https://revistas.ucr.ac.cr/index.php/cienciaytecnologia/article/view/29660
Keyword:átomo de hidrógeno
mecánica de onda
coordenadas elipsoidales
orbitales
espectro atómico
hydrogen atom
wave mechanics
ellipsoidal coordinates
orbitals
atomic spectra