A two-level overlapping Schwarz preconditioner for discontinuous Galerkin methods

 

Сохранить в:
Библиографические подробности
Авторы: Calvo, Juan G., Solano, Moisés
Формат: artículo original
Статус:Versión publicada
Дата публикации:2025
Описание:This article introduces a two-level overlapping additive Schwarz algorithm tailored for solving elliptic problems discretized with the symmetric interior penalty discontinuous Galerkin method. The proposed algorithm allows for the use of irregular subdomains, overcoming limitations of other approaches where the coarse mesh was based on triangular elements. Additionally, we provide a brief description of the numerical implementation of the Galerkin method. We present numerical results validating the relevance of our algorithm, including cases where the coefficient of the differential equation is discontinuous—a feature that is particularly relevant to various practical applications.
Страна:Portal de Revistas UCR
Институт:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Язык:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/59472
Online-ссылка:https://revistas.ucr.ac.cr/index.php/matematica/article/view/59472
Ключевое слово:Descomposición de dominios
Métodos discontinuos de Galerkin
Subdominios con frontera irregular
Algoritmos con traslape de Schwarz
Problemas elípticos nodales
Domain decomposition
Discontinuous Galerkin methods
Irregular subdomain boundaries
Overlapping Schwarz algorithms
Nodal elliptic problems