A delay differential equations model for disease transmisión dynamics

 

Uloženo v:
Podrobná bibliografie
Autoři: Erdem, Mustafa, Safan, Muntaser, Castillo-Chavez, Carlos
Médium: artículo original
Stav:Versión publicada
Datum vydání:2019
Popis:A delay differential equations epidemic model of SIQR (SusceptibleInfective-Quarantined-Recovered) type, with arbitrarily distributed periods in the isolation or quarantine class, is proposed. Its essential mathematical features are analyzed. In addition, conditions that support the existence of periodic solutions via Hopf bifurcation are identified. Nonexponential waiting times in the quarantine/isolation class lead not only to oscillations but can also support stability switches.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/39948
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/39948
Klíčové slovo:delay differential equation
integro-differential equation
epidemic model
quarantine
stability switch
oscillations
stage structure
ecuación diferencial con retraso
ecuación integro-diferencial
modelo epidémico
cuarentena
cambio de estabilidad
oscilaciones
estructura por etapas