Analysis of the local discontinuous Galerkin method for the Fokker-Planck equation
Αποθηκεύτηκε σε:
Συγγραφείς: | , |
---|---|
Μορφή: | artículo original |
Κατάσταση: | Versión publicada |
Ημερομηνία έκδοσης: | 2016 |
Περιγραφή: | In this paper we introduce and analyze the Local Discontinuous Galerkin (LDG) method for the Fokker-Planck equation with homogeneous boundary conditions. In particular, we employ a mixed formulation in which the main unknowns are given by the probability current and the probability density function. We apply known results from functional analysis, to establish that the discrete scheme is well-posed. In addition, error estimates are proved for the fully-discrete method using backward Euler time stepping. Finally, we provide numerical examples exhibiting the good performance of the proposed scheme. |
Χώρα: | Portal de Revistas UCR |
Ίδρυμα: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Γλώσσα: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/25162 |
Διαθέσιμο Online: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/25162 |
Λέξη-Κλειδί : | Fokker-Planck equation mixed finite element method discontinuous Galerkin method high-order approximations ecuación de Fokker-Planck método de elemento finito mixto método de Galerkin discontinuo aproximaciones de alto orden |