A product in the Clifford Algebra an(2, αj , γij) and it’s applicactions
保存先:
| 著者: | , |
|---|---|
| フォーマット: | artículo original |
| 状態: | Versión publicada |
| 出版日付: | 2020 |
| その他の書誌記述: | Clifford algebras are associative and non-commutative algebras defined through certain multiplicative structures. In these algebras there is not always an explicit formula that allows expressing the product between the vectors of the base of the vector space, as it is proposed in the algebra An (see [6]). This research offers an explicit expression for the product of certain elements of the base of the algebra An(2, αj , γij ), which represents the opening to deduce calculations that yield new contributions in the Clifford analysis with parameters. |
| 国: | Portal de Revistas UCR |
| 機関: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| 言語: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/37284 |
| オンライン・アクセス: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/37284 |
| キーワード: | Clifford algebra vector product Leibniz formula álgebra de Clifford producto de vectores fórmula de Leibniz |