A methodology to find the best classifier in business decision

 

Uloženo v:
Podrobná bibliografie
Autoři: Vega Vilca, José C., Torres Núñez, David A.
Médium: artículo original
Stav:Versión publicada
Datum vydání:2015
Popis:In this research, a methodology is presented to improve strategies of analysis in situations where supervised classification becomes the fundamental tool for business decision. The need to categorize the new customers into one of several groups, according to the characteristics of the subject, is analyzed through the calculation of the error rate. Programs were written using the statistical software package R, to calculate the error rate of each of nine classifiers, using cross-validation method 10 (Stone, 1974), in the 50 permutations of the data under consideration. For each of the analyzed data sets it was demonstrated, through ANOVA, that there are indeed significant differences in the average error rates of classifiers (p=0.00); therefore, it is concluded that the best classifier is the one with the lowest error rate.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/19971
On-line přístup:https://revistas.ucr.ac.cr/index.php/economicas/article/view/19971
Klíčové slovo:SUPERVISED CLASSIFICATION
CROSS VALIDATION
ERROR RATE
CUSTOMER
STATISTICAL DECISION
MULTIVARIATE ANALYSIS
CLASIFICACIÓN SUPERVISADA
VALIDACIÓN CRUZADA
TASA DE ERROR
CLIENTE
DECISIÓN ESTADÍSTICA
ANÁLISIS MULTIVARIABLE