Dimensionality Reduction Methods: Comparative Analysis of methods PCA, PPCA and KPCA

 

保存先:
書誌詳細
著者: Arroyo-Hernández, Jorge
フォーマット: artículo original
状態:Versión publicada
出版日付:2016
その他の書誌記述:The dimensionality reduction methods are algorithms mapping the set of data in subspaces derived from the original space, of fewer dimensions, that allow a description of the data at a lower cost. Due to their importance, they are widely used in processes associated with learning machine. This article presents a comparative analysis of PCA, PPCA and KPCA dimensionality reduction methods. A reconstruction experiment of worm-shape data was performed through structures of landmarks located in the body contour, with methods having different number of main components. The results showed that all methods can be seen as alternative processes. Nevertheless, thanks to the potential for analysis in the features space and the method for calculation of its preimage presented, KPCA offers a better method for recognition process and pattern extraction
国:Portal de Revistas UNA
機関:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
言語:Español
OAI Identifier:oai:www.revistas.una.ac.cr:article/7586
オンライン・アクセス:https://www.revistas.una.ac.cr/index.php/uniciencia/article/view/7586
キーワード:Dimensionality Reduction
Points Clouds
Preimage problem
Reducción de dimensionalidad
nube de datos
problema de la preimagen.