Riemannian manifolds in noncommutative geometry

 

Guardado en:
Detalles Bibliográficos
Autores: Lord, Steven, Rennie, Adam, Várilly Boyle, Joseph C.
Formato: artículo original
Fecha de Publicación:2012
Descripción:We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spin^c manifolds; and conversely, in the presence of a spin^c structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré duality. Along the way we clarify the bimodule and first-order conditions for spectral triples.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89498
Acceso en línea:https://www.sciencedirect.com/science/article/pii/S0393044012000629
https://hdl.handle.net/10669/89498
Palabra clave:geometría no conmutativa
variedad riemanniana
triple espectral
grupo de Kasparov