Riemannian manifolds in noncommutative geometry
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Fecha de Publicación: | 2012 |
Descripción: | We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spin^c manifolds; and conversely, in the presence of a spin^c structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré duality. Along the way we clarify the bimodule and first-order conditions for spectral triples. |
País: | Kérwá |
Institución: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Lenguaje: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89498 |
Acceso en línea: | https://www.sciencedirect.com/science/article/pii/S0393044012000629 https://hdl.handle.net/10669/89498 |
Palabra clave: | geometría no conmutativa variedad riemanniana triple espectral grupo de Kasparov |