Riemannian manifolds in noncommutative geometry
Salvato in:
| Autori: | , , |
|---|---|
| Natura: | artículo original |
| Data di pubblicazione: | 2012 |
| Descrizione: | We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spin^c manifolds; and conversely, in the presence of a spin^c structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré duality. Along the way we clarify the bimodule and first-order conditions for spectral triples. |
| Stato: | Kérwá |
| Istituzione: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Lingua: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/89498 |
| Accesso online: | https://www.sciencedirect.com/science/article/pii/S0393044012000629 https://hdl.handle.net/10669/89498 |
| Keyword: | geometría no conmutativa variedad riemanniana triple espectral grupo de Kasparov |