Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra
        Uloženo v:
      
    
                  | Autoři: | , | 
|---|---|
| Médium: | artículo original | 
| Datum vydání: | 1988 | 
| Popis: | The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule. | 
| Země: | Kérwá | 
| Instituce: | Universidad de Costa Rica | 
| Repositorio: | Kérwá | 
| Jazyk: | Inglés | 
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/86467 | 
| On-line přístup: | https://aip.scitation.org/doi/10.1063/1.527984 https://hdl.handle.net/10669/86467 | 
| Klíčové slovo: | Quantum mechanics in phase space Tempered distributions Locally convex spaces | 
 
    