Algebras of distributions suitable for phase-space quantum mechanics. III. The dual space of the algebra L_b(S)

 

Uloženo v:
Podrobná bibliografie
Autoři: Gracia Bondía, José M., Várilly Boyle, Joseph C., Figueroa González, Héctor
Médium: artículo preliminar
Datum vydání:1989
Popis:The strong dual space of the topological algebra L_b(S), where S is the Schwartz space of smooth declining functions on R, may be obtained as an inductive limit of projective limits of Hilbert spaces. To that end, we construct a symbol calculus for elements of L_b(S,S'). We show that the dual space is a dense ideal in L_b(S) itself, and can be given the structure of a Q-algebra with continuous quasiinversion.
Země:Kérwá
Instituce:Universidad de Costa Rica
Repositorio:Kérwá
Jazyk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86592
On-line přístup:https://hdl.handle.net/10669/86592
Klíčové slovo:Quantum mechanics in phase space
Topological algebras
Schwartz