Algebras of distributions suitable for phase-space quantum mechanics. III. The dual space of the algebra L_b(S)
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo preliminar |
Fecha de Publicación: | 1989 |
Descripción: | The strong dual space of the topological algebra L_b(S), where S is the Schwartz space of smooth declining functions on R, may be obtained as an inductive limit of projective limits of Hilbert spaces. To that end, we construct a symbol calculus for elements of L_b(S,S'). We show that the dual space is a dense ideal in L_b(S) itself, and can be given the structure of a Q-algebra with continuous quasiinversion. |
País: | Kérwá |
Institución: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Lenguaje: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/86592 |
Acceso en línea: | https://hdl.handle.net/10669/86592 |
Palabra clave: | Quantum mechanics in phase space Topological algebras Schwartz |