Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra

 

Spremljeno u:
Bibliografski detalji
Autori: Várilly Boyle, Joseph C., Gracia Bondía, José M.
Format: artículo original
Datum izdanja:1988
Opis:The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule.
Zemlja:Kérwá
Institucija:Universidad de Costa Rica
Repositorio:Kérwá
Jezik:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86467
Online pristup:https://aip.scitation.org/doi/10.1063/1.527984
https://hdl.handle.net/10669/86467
Ključna riječ:Quantum mechanics in phase space
Tempered distributions
Locally convex spaces