Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra

 

保存先:
書誌詳細
著者: Várilly Boyle, Joseph C., Gracia Bondía, José M.
フォーマット: artículo original
出版日付:1988
その他の書誌記述:The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
言語:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86467
オンライン・アクセス:https://aip.scitation.org/doi/10.1063/1.527984
https://hdl.handle.net/10669/86467
キーワード:Quantum mechanics in phase space
Tempered distributions
Locally convex spaces