Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra

 

Đã lưu trong:
Chi tiết về thư mục
Nhiều tác giả: Várilly Boyle, Joseph C., Gracia Bondía, José M.
Định dạng: artículo original
Ngày xuất bản:1988
Miêu tả:The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule.
Quốc gia:Kérwá
Tổ chức giáo dục:Universidad de Costa Rica
Repositorio:Kérwá
Ngôn ngữ:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86467
Truy cập trực tuyến:https://aip.scitation.org/doi/10.1063/1.527984
https://hdl.handle.net/10669/86467
Từ khóa:Quantum mechanics in phase space
Tempered distributions
Locally convex spaces