Algebras of distributions suitable for phase‐space quantum mechanics. I
Uloženo v:
| Autoři: | , |
|---|---|
| Médium: | artículo original |
| Datum vydání: | 1988 |
| Popis: | The twisted product of functions on R^2N is extended to a *-algebra of tempered distributions which contains the rapidly decreasing smooth functions, the distributions of compact support, and all polynomials, and moreover is invariant under the Fourier transformation. The regularity properties of the twisted product are investigated. A matrix presentation of the twisted product is given, with respect to an appropriate orthonormal basis, which is used to construct a family of Banach algebras under this product. |
| Země: | Kérwá |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Jazyk: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/86461 |
| On-line přístup: | https://aip.scitation.org/doi/10.1063/1.528200 https://hdl.handle.net/10669/86461 |
| Klíčové slovo: | Quantum mechanics in phase space Moyal product Tempered distributions |