Algebras of distributions suitable for phase‐space quantum mechanics. I
保存先:
| 著者: | , |
|---|---|
| フォーマット: | artículo original |
| 出版日付: | 1988 |
| その他の書誌記述: | The twisted product of functions on R^2N is extended to a *-algebra of tempered distributions which contains the rapidly decreasing smooth functions, the distributions of compact support, and all polynomials, and moreover is invariant under the Fourier transformation. The regularity properties of the twisted product are investigated. A matrix presentation of the twisted product is given, with respect to an appropriate orthonormal basis, which is used to construct a family of Banach algebras under this product. |
| 国: | Kérwá |
| 機関: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| 言語: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/86461 |
| オンライン・アクセス: | https://aip.scitation.org/doi/10.1063/1.528200 https://hdl.handle.net/10669/86461 |
| キーワード: | Quantum mechanics in phase space Moyal product Tempered distributions |