The asymptotic distribution of Andrews’ smallest parts function
Enregistré dans:
Auteurs: | , , , |
---|---|
Format: | artículo original |
Date de publication: | 2015 |
Description: | In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N). |
Pays: | Kérwá |
Institution: | Universidad de Costa Rica |
Repositorio: | Kérwá |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/76492 |
Accès en ligne: | https://link.springer.com/article/10.1007/s00013-015-0831-9 https://hdl.handle.net/10669/76492 |
Mots-clés: | Durfee symbol Partition Smallest parts function |