The asymptotic distribution of Andrews’ smallest parts function
Guardado en:
| Autores: | , , , |
|---|---|
| 格式: | artículo original |
| Fecha de Publicación: | 2015 |
| 实物特征: | In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N). |
| País: | Kérwá |
| 机构: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/76492 |
| 在线阅读: | https://link.springer.com/article/10.1007/s00013-015-0831-9 https://hdl.handle.net/10669/76492 |
| Palabra clave: | Durfee symbol Partition Smallest parts function |