The asymptotic distribution of Andrews’ smallest parts function
محفوظ في:
| المؤلفون: | , , , |
|---|---|
| التنسيق: | artículo original |
| تاريخ النشر: | 2015 |
| الوصف: | In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N). |
| البلد: | Kérwá |
| المؤسسة: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/76492 |
| الوصول للمادة أونلاين: | https://link.springer.com/article/10.1007/s00013-015-0831-9 https://hdl.handle.net/10669/76492 |
| كلمة مفتاحية: | Durfee symbol Partition Smallest parts function |