The asymptotic distribution of Andrews’ smallest parts function

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Banks, Josiah, Barquero Sánchez, Adrián Alberto, Masri, Riad, Sheng, Yan
Μορφή: artículo original
Ημερομηνία έκδοσης:2015
Περιγραφή:In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N).
Χώρα:Kérwá
Ίδρυμα:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/76492
Διαθέσιμο Online:https://link.springer.com/article/10.1007/s00013-015-0831-9
https://hdl.handle.net/10669/76492
Λέξη-Κλειδί :Durfee symbol
Partition
Smallest parts function