The asymptotic distribution of Andrews’ smallest parts function
Sparad:
Författarna: | , , , |
---|---|
Materialtyp: | artículo original |
Utgivningstid: | 2015 |
Beskrivning: | In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N). |
Land: | Kérwá |
Organisation: | Universidad de Costa Rica |
Repositorio: | Kérwá |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/76492 |
Länkar: | https://link.springer.com/article/10.1007/s00013-015-0831-9 https://hdl.handle.net/10669/76492 |
Nyckelord: | Durfee symbol Partition Smallest parts function |