Analiticity of the Lyapunov exponents of random products of quasi-periodic cocycles
Uloženo v:
| Autoři: | , , |
|---|---|
| Médium: | artículo preliminar |
| Datum vydání: | 2021 |
| Popis: | We show that the top Lyapunov exponent LE(p) associated with a random product of quasi-periodic cocycles depends real analytically on the transition probabilities p whenever LE(p) is simple. Moreover if the spectrum at p is simple (all Lyapunov exponents having multiplicity one ) then all Lyapunov exponents depend real analytically on p. |
| Země: | Kérwá |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Jazyk: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/85293 |
| On-line přístup: | https://arxiv.org/abs/2111.00683 https://hdl.handle.net/10669/85293 |
| Klíčové slovo: | Skew product Quasi-periodic cocycles Random Product Lyapunov exponents |