Lyapunov exponents of probability distributions with non-compact support
Guardado en:
Autores: | , |
---|---|
Formato: | artículo preliminar |
Fecha de Publicación: | 2020 |
Descripción: | A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology. |
País: | Kérwá |
Institución: | Universidad de Costa Rica |
Repositorio: | Kérwá |
Lenguaje: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/85048 |
Acceso en línea: | https://arxiv.org/abs/1810.03061 https://hdl.handle.net/10669/85048 |
Palabra clave: | Lyapunov exponents Linear cocycles Wasserstein topology |