Lyapunov exponents of probability distributions with non-compact support

 

Guardado en:
Detalles Bibliográficos
Autores: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Formato: artículo preliminar
Fecha de Publicación:2020
Descripción:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Acceso en línea:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Palabra clave:Lyapunov exponents
Linear cocycles
Wasserstein topology